
1

Wireless communication Security 
無線通訊安全

Lecture II-3
May 14, 2009
洪國寶



2

Outline
Part II: 

(d) 橢圓曲線密碼技術
– 基本代數概念
– 橢圓曲線簡介
– 基本橢圓曲線密碼協定
– 橢圓曲線之其他性質與應用

(e) 無線感測網路安全
– 無線感測網路簡介
– 無線感測網路的安全議題

• Key distribution/management
• Secure routing 

(f) 相關論文討論
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Review of Lecture 2 

• Galois Fields GF(pn) 
• Moe algebraic structures

– Field extension, Algebraic number fields, Algebraic 
closure 

• Elliptic curve
– We usually need to specify that (why?)

• The characteristic is not 2 or 3, and
• 4a3 + 27b2 ≠ 0
• Point at infinity O (or ∞)
• If the characteristic of K is 2, than the elliptic curves have different 

forms.
– What are j-invarant, n-torsion point, Weil pairing,  and 

supersingular curves etc?
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Torsion points 
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Supersingular curves

• An elliptic curve in characteristic p is called 
supersingular if E[p] = {O}.

• In other words, there are no points of order p, even 
with coordinates in an algebraically closed field.

• An attractive feature of supersingular curves is 
that computations involving an integer times a 
point can sometimes be done faster than might be 
expected. ■
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Examples of Elliptic Curves

• Over the reals, the 
solutions form a curve 
with one or two 
components

• Example:
y2 = x3-x
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Examples of Elliptic Curves

• y2 = x3-7x+6 • y2 = x3-2x+4
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The graph of a non-singular curve has two components if its discriminant is positive, 
and one component if it is negative. 
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Elliptic Curve Arithmetic

• A group law may be 
defined where the sum 
of two points is the 
reflection across the x-
axis of the third point  
on the same line

• “Chords and tangents”
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Properties of “Addition” on E
Theorem: The addition law on E has the following 

properties:

a) P + O = O + P = P for all P ∈ E.

b) P + (–P) = O for all P ∈ E.

c) (P + Q) + R = P + (Q + R) for all P,Q,R ∈ E.

d) P + Q = Q + P for all P,Q ∈ E.

All of the group properties are trivial to check except for 
the associative law (c). The associative law can be 
verified by a lengthy computation using explicit formulas, 
or by using more advanced algebraic or analytic 
methods.

- 9 -
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Group Law Axioms (recap)

• Closure
• Identity:

P + O = O + P = P
• Inverse:

(x, y) + (x, -y) = O
• Associativity
• Commutativity

In other words, the addition law + makes the points of E 
into a abelian group.
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Addition Formulae

• Now we can show the formulas for adding 
points.
– Assume P = (x1, y1) and Q = (x2, y2)

• If the characteristic of K is > 3 than 
– -P = (x1, -y1) 
– P + Q = (λ2 - x1- x2, λ(x1- x3) - y1)

• λ = (y2- y1)/(x2- x1), if P ≠ Q
= (3 x1

2 + a)/2y1,  if P = Q

=λ
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Addition Formulae
• If the characteristic of K is 2, than

– If j(E) ≠ 0:
• -P = (x1, y1 + x1)
• P+Q = (x3, y3)
x3= ((y1+y2)/(x1+x2))2 + (y1+y2)/(x1+x2) + x1+x2 + a, P ≠ Q

= x1
2 + b/ x1

2, P = Q
y3 = ((y1+y2)/(x1+x2))(x1+x3) + x3 + y1, P ≠ Q

= x1
2 + (x1 + y1/x1)x3 + x3, P = Q
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Addition Formulae

• If the characteristic of K is 2, than
– If j(E) = 0:

• -P = (x1, y1 + c)
• P+Q = (x3, y3)
x3= ((y1+y2)/(x1+x2))2 + x1+x2, P ≠ Q

= (x1
4 + a2)/ c2, P = Q

y3 = ((y1+y2)/(x1+x2))(x1+x3) + c + y1, P ≠ Q
= ((x1

2 + a)/c)(x1+x3) + c + y1, P = Q
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Elliptic Curves over Finite Fields

• An elliptic curve may be defined over any 
finite field GF(q) (char. of GF(q) > 3)

y2 = x3 + ax + b
• For GF(2m), the curve has a different form:

y2 + xy = x3 + ax2 + b
where b ≠ 0

• Addition formulae are similar to those over R.  
■
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Example 
• E : Y2 = X3 – 5X + 8   modulo 37

{   O, (1,2), (1,35), (5,16), (5, 21), (6,3), (6,34), (8,6), (8,31), 
(9,10), (9, 27), (10,12), (10,25), (11,10), (11, 27), (12,14), 
(12,23), (16,18), (16,19), (17, 10), (17,27), (19,1), (19,36), 
(20,8), (20, 29), (21,5), (21,32), (22,1), (22,36), (26, 8), 
(26,29), (28,8), (28,29), (30,12), (30, 25), (31,9), (31,28), 
(33,1), (33,36), (34, 12), (34,25), (35,11), (35,26), (36,7), 
(36, 30)  } 

• Let P1 = (6,3)   and   P2 = (9,10). Then  P1 + P2 = (11,10). 
(see next slide for more details)
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Example
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• P1 = (6, 3), P2 = (9, 10) 
• λ= (10-3)/(9-6) = 7/3 = 7×25 = 27 mod 37
• (272 – 6 – 9, -273 +324 + 243 - 3) = 

(714, -19119) = 
(11, 10) mod 37
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Elliptic Curves over Finite Fields

• Let #E(Fq) denote the number of points on 
an elliptic curve E(Fq), including O

• Hasse bound: #E(Fq) = q+1-t, where
|t| ≤ 2 √q

• The group of points is either cyclic or a 
product of two cyclic groups ■
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Example 

• y2 = x3 + 1 / GF(5)

Is E(F5) cyclic?
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Anomalous curves

• An elliptic curve is called anomalous if 
#E[Fq] = q. 

• The discrete log problem for the group E(Fq)
can be solved quickly.

• An attractive feature of anomalous curves 
is that they permit a speed-up in certain 
calculation in E(Fq). ■
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Scalar Multiplication

• Scalar multiplication is repeated group 
addition:

cP = P + ··· + P (c times)
where c is an integer

• For all P ∈ E(Fq),
nP = O

where n = #E(Fq)
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Analogy with Multiplicative 
Groups

Elliptic Curve
Group

Multiplicative
Group

point addition multiplication

scalar
multiplication exponentiation

elliptic curve
discrete logarithm discrete logarithm
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Outline
Part II: 

(d) 橢圓曲線密碼技術
– 基本代數概念
– 橢圓曲線簡介
– 基本橢圓曲線密碼協定
– 橢圓曲線之其他性質與應用

(e) 無線感測網路安全
– 無線感測網路簡介
– 無線感測網路的安全議題

• Key distribution/management
• Secure routing 

(f) 相關論文討論
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Elliptic Curve Cryptography
• ECDLP (EC discrete logarithm problem)
• Related issues

– Restrictions, Domain Parameters, Selecting curves
• Elliptic Curve Cryptographic Schemes

– ECDH
– ECMQV
– ECIES
– ECDSA 

• ECC Advantages and Disadvantages
• Standardization Efforts■
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EC Discrete Logarithm Problem
• Problem: Given two points W, G, find s such that 

W = sG
– first suggested by Miller 1985, Koblitz 1987

• With appropriate cryptographic restrictions, this is 
believed to take exponential time
– O(√ r) time, where r is the order of W

• There is a way to reduce the log problem over 
elliptic curve to the log problem over Fqk
– The reduction only works for some special curves that 

are called supersingular
– Why do you care about this?■
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EC Discrete Logarithm Problem

• By comparison, factoring and ordinary 
discrete logarithms can be solved in 
subexponential time

• ECC thus offers much shorter key sizes than 
other public-key cryptosystems■
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Elliptic Curve Cryptography
• ECDLP (EC discrete logarithm problem)
• Related issues

– Restrictions, Domain Parameters, Selecting curves
• Elliptic Curve Cryptographic Schemes

– ECDH
– ECMQV
– ECIES
– ECDSA 

• ECC Advantages and Disadvantages
• Standardization Efforts■
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Typical Cryptographic 
Restrictions

• #E(Fq) = kr for large prime r
– k is cofactor

• GCD (k, r) = 1
• “Anomalous” condition: r ≠ q
• MOV condition: r does not divide qi-1 for 

small i  ■
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Domain Parameters

• Common values shared by a group of users 
from which key pairs may be generated

• User or trusted party may generate domain 
parameters

• Anyone may validate domain parameters■
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EC Domain Parameters

• Finite field Fq

• Elliptic curve E(Fq) with cryptographic 
restrictions

• Prime divisor r of #E(Fq)
• Cofactor k (usually 1,2, or 4)
• Base point G ∈ E(Fq) of order r■
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Generating EC Domain 
Parameters

1. Select a prime power q
2. Select an elliptic cuve E over Fq with 

cryptographic restrictions
– order #E(Fq) = kr

3. Generate a point G of order r
4. Output Fq, E(Fq), r, k, G■
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Selecting an Elliptic Curve

• Random method
• Complex multiplication method
• Subfield method

• Methods provide tradeoff between speed, 
“structure” in curves
– less structure = more conservative in 

assumptions about security ■
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Random Method

1. Generate a random curve
2. Count the number of points #E(Fq)
3. If restrictions not met, goto 1

• No structure, but step 2 may be slow
– (Schoof 1985, etc.)■
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Generating a Point of Order r

1. Generate a point H ∈ E(Fq)
2. Compute G = kH
3. If G = O, goto 1
4. Output G■
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Validating EC Domain 
Parameters

1. Check that q is a prime power
2. Check that E is an elliptic curve over Fq

with cryptographic restrictions
– order #E(Fq) = kr, where r is prime

3. Check that G is a point on E(Fq) of order r
4. Output valid if all checks pass, invalid

otherwise■
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Key Pairs

• Pairs of public, private values with which 
users may perform cryptographic operations

• User or trusted third party may generate key 
pair

• Anyone may validate public key■
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EC Key Pairs

• Public key W ∈ E(Fq)
• Private key s ∈ [1, r-1]

– where W = sG ■
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Generating an EC Key Pair

1. Randomly generate s ∈ [1, n-1]
2. Compute W = sG
3. Output (W, s) ■
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Validating an EC Public Key

• Assume valid domain parameters
1. Check that W is a point on E(Fq) of order r
2. Output valid if so, invalid otherwise■
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Elliptic Curve Cryptography
• ECDLP (EC discrete logarithm problem)
• Related issues

– Restrictions, Domain Parameters, Selecting curves
• Elliptic Curve Cryptographic Schemes

– ECDH
– ECMQV
– ECIES
– ECDSA 

• ECC Advantages and Disadvantages
• Standardization Efforts■
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Cryptographic Schemes
• Following general model from IEEE P1363, a scheme is a 

set of related operations providing the building blocks for a 
protocol
– Examples:

• Key agreement
• Signature with appendix
• Encryption

• A (cryptographic) scheme consists of an unambiguous 
specification of a set of transformations that are capable of 
providing a (cryptographic) service when properly 
implemented and maintained. (NIST) 
– A scheme is a higher level construct than a primitive and a 

lower level construct than a protocol.■
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Scheme Operations

• Depending on the scheme, related 
operations may include:
– domain parameter generation, validation
– key pair generation, public-key validation
– one or more scheme-specific operations  ■
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Key Agreement Scheme

• Key agreement operation derives a shared 
secret key from a private key, another’s 
public key, and key derivation parameters

• Multiple secret keys can be obtained by 
varying parameters■
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Elliptic Curve Diffie-Hellman

• Key agreement scheme based on Diffie-
Hellman protocol

• Underlying function:
– KDF: key derivation function ■
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ECDH Key Agreement

• Input: private key s, other’s public key W*, 
key derivation parameters P

• Output: shared secret key K
1. Compute Z = sW*
2. Compute K = KDF (Z, P)
3. Output K ■
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Key Agreement Modes

• Each key pair may be ephemeral, 
authenticated, or a combination, depending 
on security goals

• Examples of protocol modes:
– anonymous
– static-static
– signed ephemeral-ephemeral
– ephemeral-static ■
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Elliptic Curve Diffie-Hellman Key Exchange
Public Knowledge: A group E(Fp) and a point P of order n.

BOB                                                            ALICE

Choose secret 0 < b < n                 Choose secret 0 < a < n

Compute QBob = bP Compute QAlice = aP

Compute bQAlice Compute aQBob

Bob and Alice have the shared value bQAlice = abP = aQBob

Send QBob to Alice

to Bob                                                Send QAlice

Presumably(?) recovering abP from aP and bP requires
solving the elliptic curve discrete logarithm problem.

- 46 -
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ECMQV
• MQV is short for Menezes-Qu-Vanstone, the names of the 

authors of this protocol. 
• MQV offers attributes—such as key-compromise 

impersonation resilience and unknown key-share resilience—
that are not found with DH. 
– This allows protocols that use MQV for key agreement to offer 

stronger authentication and ensure malicious entities cannot 
masquerade as a third party to the entity whose key was compromised.

• MQV also has many desirable performance attributes, 
including 
– the dominant computational steps are not intensive 
– has low communication overhead, 
– is role-symmetric, non-interactive and 
– does not use encryption or time-stamping.  ■
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Encryption Scheme

• Encryption operation computes a ciphertext
from a message with a public key

• Decryption operation recovers a message 
from a ciphertext with a private key

• Augmented encryption scheme also binds 
control information to message ■
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Elliptic Curve Integrated Encryption 
Scheme (ECIES) - Encryption

• Input: Public key (static) W in E, message M.
• Output: Ciphertext (R,S,A).
• Actions:
1. Set R = rG for random r in [1,n-1].
2. Set (u,a) = KDF(x( rW )).
3. Set S = Encrypt(u,M) and A = MAC(a,S).

• Note: (R,r) ephemeral public-private key pair. ■
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ECIES - Decryption

• Input: Private key s, ciphertext (R,S,A).
• Output: Invalid; or valid and message M.
• Actions:
1. Set (u,a) = KDF( x( sR )).
2. Valid if A=MAC (a,S) else invalid.
3. If valid, set M = Decrypt(u,S). ■
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Signature Scheme

• Signature generation operation computes a 
signature on a message with a private key

• Signature verification operation verifies a 
signature with a public key ■
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Elliptic Curve Digital Signature 
Algorithm

• Signature scheme based on NIST FIPS 186-1 
DSA

• Underlying function
– Hash: collision-resistant hash function ■
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ECDSA Signature Generation

• Input: private key s, message M
• Output: signature (c,d)
1. Compute f = Hash (M)
2. Generate a one-time key pair (u, V)
3. Compute c = int (xV) mod r
4. Compute d = u-1(f + sc) mod r
5. If c = 0 or d = 0, goto 2
6. Output (c,d) ■
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ECDSA Signature Verification
• Input: signer’s public key W, message M, signature (c,d)
• Output: valid or invalid
1. Compute f = Hash (M)
2. Check that 1 ≤ c,d ≤ r-1
3. Compute h = d-1 mod r
4. Compute P = fhG + chW
5. Check that P ≠ O
6. Check that c = int (xP) mod r
7. If all checks pass, output valid, otherwise output 

invalid ■
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Some Observations

• In these schemes, only one or two steps are 
EC operations, some are modular arithmetic, 
the rest are Hash, KDF, Encrypt, MAC
– the additional operations help provide provable 

security
• Schemes are readily adapated to 

multiplicative groups ■
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Elliptic Curve Cryptography
• ECDLP (EC discrete logarithm problem)
• Related issues

– Restrictions, Domain Parameters, Selecting curves
• Elliptic Curve Cryptographic Schemes

– ECDH
– ECMQV
– ECIES
– ECDSA 

• ECC Advantages and Disadvantages
• Standardization Efforts■
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Key Size Comparison

• Today, three families of public-key 
techniques are prominent

• Following P1363, named according to the 
hard problem:
– DL: (ordinary) discrete logarithms
– EC: elliptic curve discrete logarithms
– IF: integer factorization

• Each has its own advantages ■
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Key Size Comparison

• Key size is length in bits of:
– DL: field order q

• also consider group order r

– EC: group order r
– IF: modulus n

• Key sizes can be compared based on running time 
for solving hard problem with current methods
– other factors to consider ■
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Comparable Key Sizes
(Based on Running Time)

EC DL, IF Symmetric

112 512 56

160 1024 80

224 2048 112
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Advantages

• Alternative hard problem
• Speed
• Data size
• New types of schemes
• Many options ■
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Alternative Hard Problem

• EC Discrete Logarithm Problem is very 
different than DL, IF hard problems
– does not appear feasible to apply DL, IF 

approaches to solve it
• Thus, it is an effective alternative against 

advances in methods for other problems■
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Speed

• EC operations are generally faster than DL, 
IF counterparts at comparable key sizes
– GF(2m) arithmetic affords further speedups

• Key pair generation is much faster than for 
IF ■
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Data Size

• EC data are shorter than DL, IF 
counterparts

• Intermediate values are shorter
• Keys are shorter

– benefit depends on certificate content
• Signatures with appendix are same size as 

for DL, shorter than IF ■
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New Types of Schemes

• EC family, like DL, has great flexibility due 
to the availability of common domain 
parameters

• Multiple schemes can be combined 
efficiently, e.g.:
– signature + encryption
– signature / key agreement + certification■
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Many Options

• EC family affords many choices:
– field type, size, representation
– curve formula
– group order
– base point
– cryptographic scheme

• Appropriate choices can meet varying 
security and implementation objectives ■
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Disadvantages

• Alternative hard problem
• Curve generation
• Many options ■
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Alternative Hard Problem

• ECDLP has not been studied as long as DL, 
IF hard problems, and even a modest 
improvement in methods could have great 
impact

• However, the focus on this area has grown 
considerably over the past few years, with 
increased confidence ■
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Curve Generation

• EC curve generation is complex, not readily 
implemented

• However, implementers can rely on third 
parties for curves, which can be validated
– e.g., NIST curves ■
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Many Options

• ECC affords many options, so 
interoperability is challenging:
– no conversion between GF(2m), GF(p)
– hardware optimizations may be specific to one 

set of domain parameters
• However, much of this will be settled by 

standards and industry practice ■
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Elliptic Curve Cryptography
• ECDLP (EC discrete logarithm problem)
• Related issues

– Restrictions, Domain Parameters, Selecting curves
• Elliptic Curve Cryptographic Schemes

– ECDH
– ECMQV
– ECIES
– ECDSA 

• ECC Advantages and Disadvantages
• Standardization Efforts■
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Standardization Efforts

• Elliptic curves are parts of standards being 
developed by several groups:
– ANSI X9F1
– IEEE P1363
– ISO JTC1 SC27
– SECG
– U.S. NIST ■
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U.S. NIST

• Information processing for U.S. government
• FIPS 186 (Digital Signature Standard) to 

add support for ANSI X9.62
• Eventual ANSI X9.63 support likely
• Reference elliptic curves published
• csrc.nist.gov/fips■
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NSA Suite B Cryptography
• Required cryptographic algorithms for all US non-classified and 

classified (SECRET and TOP-SECRET) needs
– Except a small area of special-security needs (e.g. nuclear security) –

guided by Suite A (definition is classified)
• Encryption: AES

– FIPS 197 (with keys sizes of 128 and 256 bits)
• Digital Signature: Elliptic Curve Digital Signature 

Algorithm
– FIPS 186-2 (using the curves with 256 and 384-bit prime moduli)

• Key Exchange: Elliptic Curve Diffie-Hellman or ECMQV
– Draft NIST Special Publication 800-56 (using the curves with 256 and 

384-bit prime moduli)
• Hashing: Secure Hash Algorithm

– FIPS 180-2 (using SHA-256 and SHA-384)■
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NIST standards

• NIST has proposed a specific set of elliptic curves for cryptography 
purposes (DRAFT FIPS PUB 186-3)

• Elliptic curves are defined for prime fields GF(p) and binary 
polynomial fields GF(2m)

Curve P-192  (a = -3)
p = 6277101735386680763835789423207666416083908700390324961279
n = 6277101735386680763835789423176059013767194773182842284081
b = 64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1
G x = 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012
G y = 07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811 ■
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ECC recap 

• ECC offers an attractive alternative to other 
public-key cryptosystems
– new hard problem
– smaller key size

• Many standards are emerging
• Number theory continues to be useful■
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Elliptic Curve Research Areas

• EC over finite fields has been an increasing 
focus of research

1. Efficient elliptic curve arithmetic, scalar 
multiplication
– including finite field arithmetic

2. Efficient curve generation
3. Cryptographic properties ■
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Some Interesting Applications

• Factoring (Lenstra 1985)

– running time of Elliptic Curve Method (ECM) 
depends on size of prime factors of a number, 
ideal for “smooth” numbers

• Primality proving (Goldwasser-Kilian 1986)

– under number-theory assumptions, method for 
proving primality in random polynomial time

• Fermat’s Last Theorem■
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